What is the message of the popular media cartoon, or advertisement?
- What is the message of the popular media cartoon, or advertisement?
- What examples of physiological, psychological, or social aspects of sexual development are conveyed? Explain.
Points will be assigned for depth and breadth of information and for creativity in presenting the information. Create a picture of your own Bioregion so that others can see the value and complexity of your environment.
Topic 4
Topic 1: Healthy People 2020 set a goal that 80% of the people in the U.S. have optimally fluoridated water available in their community. Today, about 72% of Americans have access to optimally fluoridated water. Do you know if your community water supply is fluoridated? To find the answer, check with your local water department. Is the water naturally rich in fluoride, or is this mineral added to the water supply? What amount of fluoride is in the drinking water? If it is added to the water supply, how long has this procedure been in operation? If the water does not provide fluoride, how can you obtain sufficient fluoride?
Topic 2: Claire runs cross country in college. She knows she needs adequate carbohydrate to keep her body fueled. Typically, her food intake consists of cheese sticks and a glass of orange juice for breakfast; a peanut butter sandwich, apple , bag of pretzels, and sweetened tea for lunch; spaghetti with marinara sauce, garlic, bread, salad, and a glass of milk for dinner; and an orange for her evening snack. Lately, she is feeling tired and has to wear a sweatshirt in class to keep warm. She is also having trouble concentrating. What do you think is causing Claire’s problem and why? What would you recommend?
Topic 3: Your Uncle has seen the recent recommendations to reduce our salt intake along with the discussions on the amount of salt in our food. He wonders why we need it if it is so bad for our health. How would you explain this dilemma? What would you recommend?
Topic 4: Your friend is sick and has diarrhea, maybe from food poisoning. Why is it important for her to drink water even when she does not feel well and doesn’t want to eat? Do you think drinking fluids will help her feel better?
What is the chance (= probability) that any child will inherit the dominant allele if one parent (Parent #1) does not carry the allele and the other (Parent #2) is heterozygous for it? Provide a clear explanation and complete the Punnett Square below. Be sure to define the letters you use for the two alleles:
2. Below is a diagram showing the inheritance of an X-linked trait; the first generation is at the top and the third generation is at the bottom. Describe what this pedigree depicts in terms of gender, presence or absence of the disorder, and what feature(s) indicate that the pedigree is for an X-linked trait.
3. In one experiment, Mendel crossed a pea plant that bred true for green pods with one that bred true for yellow pods. All of the F1 plants had green pods. What does it mean when an organism like Mendel’s pea plants is true breeding? Which form of the trait (green or yellow pods) is dominant? Explain how you arrived at your conclusion. This should include the possible genotypes of the parents involved in the cross and those of the F1 generation.
4. What type of mutation has occurred in the DNA of people with sickle cell anemia? (Look back, if you need to, to see what causes sickle cell.)
5. A man who has type B blood and a woman who has type A blood could have children of which phenotypes? Explain your answer; be sure to consider what the possible genotypes are for both parents in your answer.
6. Unattached earlobes are a dominant trait. If A denotes the allele for unattached earlobes, and a denotes the allele for attached earlobes, what is (are) the possible genotype(s) of a person who has unattached earlobes?
Could both parents of a person with unattached earlobes have attached earlobes? Why or why not? Think about what the parent’s genotypes have to be.
7. How are a locus, allele and a gene similar? How would you differentiate among these three terms?
8. Explain what is meant by polygenic inheritance, pleiotropy, and human gene therapy. Provide an example of each.
1. In a human population, the genotype frequencies at one locus are 0.75 AA, 0.20 Aa, and 0.05 aa. What is the frequency
of the A allele [f(A)] and a allele [f(a)] for the population? Are they in Hardy-Weinberg equilibrium? (5 pts)
2. Calculate the number of heterozygotes in a population with p = 0.6 and q = 0.4 (at time = 0). After 4 generations of
inbreeding between siblings (F = 0.25) in a population of 650. (6 pts)
3. Human albinism is an autosomal recessive trait. Suppose that you find a village in the Andes where 8/1000 of the
population is albino. If the population size was 1600 and the population is in Hardy-Weinberg equilibrium with
respect to this trait, how many individuals are expected to be carriers (heterozygotes)? (5pts)
4. A boatload of 400 Swedish tourists, all of whom bear the MM blood group genotype, are marooned on Haldane Island,
where they are met by an population of Islanders totaling 1000, all bearing blood group NN genotype. In time, the
castaways become integrated into Island society. Assuming random mating, no mutation, no selection (based on
blood group), and no genetic drift, what would you expect the blood group distribution to be among 320 progeny of
the new Haldane Island population? (5 pts)
5. You identify a population of mice (Peromyscus maniculatus) on an island. Their coat color is controlled by a single
gene: BB mice are black, Bb mice are gray, and bb mice are white. You take a census of the population and record
the following numbers of mice:
Black 1156
Gray 408
White 36
(a) What are the frequencies of the two alleles? (4 pts)
(b) What are the Hardy-Weinberg equilibrium frequencies for these three phenotypes? (4 pts)
(c) A heat wave hits the island. All mice with black fur die from heat stroke, but the other mice survive. What are the new
allele frequencies for the population? (4 pts)
(d) If the population suffers no further cataclysms after the heat wave, and the surviving animals mate randomly, what will
be the frequency of mice with black fur in the next generation? (4 pts)
(e) If the climate is altered permanently, so that mice with black fur die before reproducing, which following statement is
correct? (5 pts)
(1) At Hardy-Weinberg equilibrium, f(B) will equal 0.135.
(2) The fitness of mice with gray fur (ωBb) must be equal to 0.5.
(3) The fitness of mice with black fur (ωBB) is 0.
(4) The B allele will disappear from the population in one generation.
(5) The B allele will disappear from the population in two generations.
6. Which of the following are requirements for evolution by natural selection? Explain your answer. (8 pts)
I Environmental change
II Differential survival and reproduction
III Heritability of phenotypic variation
IV Variation in phenotype
V Sexual reproduction
A) II, III, V
B) II, III, IV
C) I, II, IV
D) III, IV, V
E) II, IV, V
7. Which of the following processes is the source of genetic variation within populations? (8 pts)
A) Reproductive Isolation
B) Mutation
C) Selection
D) Asexual reproduction
E) Genetic drift
Explain your answer including a description of the impact of each on genetic variation.
8. If the population (17,377 in 2018) of folks in Perry, GA, had an f(a) = 0.2 and folks in Valdosta, GA, has a f(a) = 0.6,
then how many people from Valdosta, GA, would have to migrate to Perry to increase the population to
approximately f(a) = 0.3? (5 pts, remember, you can’t have fractional people)
9. What is the Ne of a population with the following annual censuses, [note: the drop in size due to 2010 and 2011 being
extreme drought years]? (5 pts)
2008: 9730
2009: 8810
2010: 3653
2011: 420
2012: 94
2013: 1560
2014: 5650
2015: 8700
2016: 9700
2017: 12110
2018: 15060
2019: 30789
10. Consider the following populations that have the genotypes shown in the following table:
Population AA Aa aa
1 1.0 0.0 0.0
2 0.0 1.0 0.0
3 0.25 0.50 0.25
4 0.25 0.25 0.50
5 0.333 0.333 0.333
6 0.0225 0.255 0.7225
7 0.5929 0.3542 0.0529
8 0.9604 0.0392 0.0004
a. What are p and q for each population? (4 pts)
b. Which of the populations are in Hardy-Weinberg equilibrium? (4 pts)
c. Populations 1 and 2 have a tree fall across their islands so that individuals can cross. If equal numbers of the
individuals occur on each island, what is the new population’s allele frequencies and genotype frequencies
after one generation of random mating? (6 pts)
d. In population 3, the a allele is less fit than the A allele, and the A allele is incompletely dominant. The result
is that AA is perfectly fit (= 1.0), Aa has a fitness of 0.8, and aa has a fitness of 0.6. With no mutation or
migration, graph the allele frequency of the a allele after 10 generations under selection (e.g., Time 0 = q
above, Time 1 = first generation after selection) (8 pts)
e. In population 8, the population size gets radically reduced to 50 individuals, total. What is the most likely
fate of the “a” allele, and what genetic principle would lead you to believe that the case? (4 pts)
11. You digest a linear piece of DNA with two restriction enzymes, BamH1 & Sma1, and get the following sized
fragments (in kb [kilobases]) (10 pts):
BamH1 Xho1 BamH1 & Xho1
10 kb 12 kb 8 kb
6 kb 8 kb 6 kb
4 kb 4 kb
2 kb
Draw the appropriate restriction fragment map based on this data labeling all restriction sites
Phone: +3239551523
mycopywriter002@gmail.com